Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237836

RESUMO

Cutaneous candidiasis is characterized by an overgrowth of Candida leading to skin inflammation and infection. Similar to bacteria, Candida can develop tolerance to common antifungal drugs. Cold atmospheric plasma (CAP), with its proven antimicrobial properties, offers a promising alternative to the prevailing methods. Because of plasma heterogeneity each new device must be tested individually for its effectiveness. Antimicrobial activity is usually studied using planktonic microorganisms or animal models, making it difficult to extrapolate the results to the human system. Therefore, a 3D skin model of cutaneous candidiasis for the antimicrobial testing of CAP was established. First, the reaction of the 3D-skin model to Candida infection was examined using various histological and molecular-biological methods. Infection with C. albicans resulted in increased expression and secretion of pro-inflammatory cytokines and augmented expression of antimicrobial peptides. Within 48 h, hyphal growth spread throughout the model and caused tissue damage. Second, the CAP treatment was employed. It was shown that CAP significantly reduced the spread of the yeast in the infected skin models as well as decreased the expression and secretion of the infection markers. The plasma device exhibited a high antifungal activity by completely inhibiting hyphal growth and reducing inflammation at the highest treatment duration.

2.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34772014

RESUMO

In this study, assessment of the antimicrobial activity of a novel, plasma-cured 2.5% (w/v) Cu(NO3)2-containing sol-gel surface was performed. In contrast to state-of-the-art sol-gel coatings, the plasma curing led to a gradient in cross-linking with the highest values at the top of the coating. As a result, the coating behaved simultaneously hard, scratch-resistant, and tough, the latter due to the more flexible bulk of the coating toward the substrate. Further, the diffusion and permeation through the coating also increased toward the substrate. In our study, tests according to ISO 22196 showed antibacterial activity of the 2.5% (w/v) Cu(NO3)2-containing sol-gel surface against all bacterial strains tested, and we expanded the testing further using a "dry" evaluation without an aqueous contact phase, which confirmed the antimicrobial efficacy of the 2.5% (w/v) Cu(NO3)2-containing sol-gel surface. However, further investigation under exposure to soiling with the addition of 0.3% albumin, used to simulate organic load, led to a significant impairment in the antibacterial effect under both tested conditions. Furthermore, re-testing of the surface after disinfection with 70% ethanol led to a total loss of antibacterial activity. Our results showed that besides the mere application of an antimicrobial agent to a surface coating, it is also necessary to consider the future use of these surfaces in the experimental phase combining industry and science. Therefore, a number of tests corresponding to the utilization of the surface should be obligative on the basis of this assessment.

3.
Skin Pharmacol Physiol ; 29(5): 257-265, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27811481

RESUMO

BACKGROUND: Application of cold atmospheric pressure plasmas (CAPs) in or on the human body was termed 'plasma medicine'. So far, plasmas were utilized for sterilization of implants, other heat-sensitive products, or employed for chemical surface modifications. By now, CAPs are further used effectively for wound treatment. The present study analyses the effect of a plasma jet with air or nitrogen as process gas, previously evaluated for antimicrobial efficacy, on human cells using a 3D skin model. METHODS: CAP treatment of 3D skin models consisting of a keratinocyte-containing epidermal layer and a fibroblast/collagen dermal matrix was performed using the Tigres plasma MEF technology. To evaluate the effects on the 3D skin models, the following plasma parameters were varied: process gas, input power, and treatment time. RESULTS: Low CAP doses exhibited good cell compatibility. Increasing input power or elongating treatment intervals led to detrimental effects on 3D skin model morphology as well as to release of inflammatory cytokines. It was further observed that air as process gas was more damaging compared to nitrogen. CONCLUSIONS: Treatment of 3D skin models with the plasma MEF nozzle using air or nitrogen is reported. A clearly dose- and time-dependent effect of CAPs could be observed in which the CAP based on nitrogen exhibited higher cell compatibility than the CAP generated from air. These settings might be recommended for medical in vivo applications such as wound decontamination.


Assuntos
Gases em Plasma , Pele/patologia , Ar , Técnicas de Cultura de Células , Células Cultivadas , Colágeno , Citocinas/genética , Citocinas/metabolismo , Fibroblastos , Expressão Gênica , Humanos , Queratinócitos , Nitrogênio , Técnicas de Cultura de Órgãos , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...